ASPERGILLOSIS

Slide study set #9

Originally prepared as Aspergillosis - Dactylariosis by:

F. MERRILL RANCK JR
Animal Disease Diagnostic Laboratory
Southern Indiana Purdue Agricultural Center
Route 1, Dubois, Indiana 47527

Revised by:

ANDREA M. MILES
Department of Food Animal and Equine Medicine
College of Veterinary Medicine, North Carolina State University
4700 Hillsborough St., Raleigh, North Carolina 27606

This slide study set was created in 1978 and revised in 1995; some information may be outdated.

COPYRIGHT 1978, 1995
AMERICAN ASSOCIATION OF AVIAN PATHOLOGISTS, INC.

CD version produced in 2001 with the assistance of the AAAP Continuing Education and Electronic Information Committees
Aspergillosis is the most common respiratory mycotic disease of poultry. Aspergillosis is defined as any disease condition caused by a member of the fungal genus *Aspergillus*. Avian aspergillosis most often occurs in a pulmonary form and hence the synonyms brooder pneumonia and mycotic pneumonia often appear in the literature. *A. fumigatus* was first reported in the lungs of a bustard (*Otis taradaga*) in 1863. The species name was attributed to Fresenius who applied the term “Aspergillosis” to this respiratory disease.

Aspergillosis occurs frequently in turkeys and chickens, though all species of birds are probably susceptible. Aspergillosis occurs in both acute and chronic forms in poultry. Acute aspergillosis is usually characterized by outbreaks in young birds with high morbidity and high mortality. Chronic disease, which occurs in adult birds, is less common but economically important. Outbreaks occur when the organism is present in sufficient quantities to establish disease or when the bird's resistance is impaired by factors such as environmental stress, immunosuppression from concomitant diseases or inadequate nutrition.
Etiology. *Aspergillus fumigatus* is the most common etiologic agent of aspergillosis, but *A. flavus* and *A. niger* are also isolated in some cases. These organisms are ubiquitous, commonly occurring in decaying vegetative matter, soil, feed grain, and animal litter. The organism grows well on most common laboratory media, however Sabouraud's dextrose or potato dextrose agar are more selective. All *Aspergillus* species grow well at 25-37°C, however *A. fumigatus* also grows well at temperatures as high as 45°C.

Epizootiology. *Aspergillus spp.* can penetrate eggshells and thus infect the embryo. Infected embryos may die or hatch with well-developed lesions. If infected eggs break, large numbers of spores are released which contaminate the hatchery environment. Contamination of the hatchery or air system in hatcheries is usually responsible for outbreaks of aspergillosis in very young poults and chicks. Contaminated poultry litter is often the source of *Aspergillus spp.* in older birds. Respiratory infection usually follows inhalation of large numbers of spores from heavily contaminated feed, litter or environment. Conjunctival infections may occur from heavy exposure to airborne spores following traumatic injuries. Infections in the brain, posterior chamber of the eye or other visceral tissues result from systemic invasion from the respiratory tract. It is believed that healthy birds resist infection, but that resistance can be overwhelmed by massive exposure or impaired host defenses.

Clinical signs and lesions. Respiratory infections with *Aspergillus spp.* produce dyspnea, gasping (“gaping”), cyanosis and accelerated breathing. Gross lesions of the air sacs and lungs vary from small plaques to nodules from 1 mm to 7 mm in size that are white to yellow. Plaques may also be found at the level of the syrinx or adjacent to large bronchi in the lung. Occasionally, larger, thickened plaques with greenish fur-like growth of mold are found in the air sacs or on the coelom walls. Microscopically, infected lung tissues have lesions of focal pneumonia, multiple areas of necrosis and granulomas. Lesions in the air sac and on the inner surface of the thorax may show mycelia producing conidiophores with conidia.
Eye infections are usually unilateral and begin with lacrimation, followed by a conjunctivitis that may become chronic and are characterized by a yellow, cheesy plaque beneath the nictitating membrane. The vitreous humour and cornea may be involved.

Infection of the brain usually produces encephalitis with ataxia, incoordination, and/or torticollis. Gross brain lesions are usually circumscribed areas that range in color from white to yellow. In infected brain sections, the mycelia generally spread from individual foci of the surrounding tissue and show characteristic dichotomous branching. Mycelia are best demonstrated with fungal stains.

Differential diagnosis. Aspergillosis must be differentiated from other respiratory and mycotic diseases. *Dactylaria gallopava* is the second most common respiratory mycotic disease of poultry. It may cause a brooder pneumonia-like condition with formation of small cream-colored nodules in the lungs during the first two weeks of life. Like *Aspergillus spp.*, the organism often spreads to the brain causing encephalitis and to the eye causing ophthalmitis. Clinical signs and lesions of dactylariosis resemble those of encephalitis. Lesions in the brain range from diffuse infection involving an entire lobe to abscesses confined to specific areas. The color of these lesions varies from gray-brown to reddish-tan. *Aspergillus spp.* and *D. gallopava* may be differentiated by culture or histopathology. *D. gallopava* grows on Sabouraud's dextrose agar as a brownish, velvet-like colony that causes the surrounding media to turn red to brown. *Aspergillus fumigatus* grows as a green colony with white margins. Microscopically, the mycelia of *D. gallopava* are smaller in diameter than those of *Aspergillus spp.* and do not exhibit dichotomous branching. Numerous giant cells are characteristic of microscopic brain lesions caused by *D. gallopava*.

Phycomycosis, caused by species of *Rhizopus, Absidia* and *Mucor* are rare in the respiratory tract of birds but may cause nodules within the lungs which grossly resemble those caused by *A. fumigatus* or *D. gallopava*.

Penicillium cultures look very similar to *A. fumigatus* in gross examination. *A. fumigatus* and *Penicillium* may be differentiated based on microscopic examination of a wet mount or tape mount of the spore producing bodies.
Prevention, control and treatment. Aspergillosis in young chicks and poults can be controlled through breeder management and hatchery sanitation. Eggs which are cracked or of poor shell quality should not be set. Thoroughly clean, disinfect and fumigate egg storage areas, incubators and hatchers. Clean, disinfect and dry all egg flats, racks and baskets (trays) between each use. Monitor hatchery environment for mold contamination.

Use only dry, clean litter and mold-free feeds. Store feeds and litter properly to inhibit growth of mold. Keep humidity in mid-range, the fungus multiplies during the wet period producing abundant spores which then become aerosolized when they become dry. Mold inhibitors are available as feed additives as well as for disinfection and fumigation. Good cleaning to remove organic debris prior to disinfection is the most important factor in preventing the disease.

Treatment is usually not worthwhile due to expense.
REFERENCES

ACKNOWLEDGMENTS

Acknowledgments are gratefully given to the following people/companies for supplying slides:

Mr. Chris Williams: Slide #1
Dr. Lloyd Keck: Slide #2
Dr. F. Merrill Ranck, Jr: Slides #4 and 5
Dr. H. John Barnes: Slides #3,6,7, and 9 - 17
Dr. Martin D. Hicklin and Mr. John P. Gust: Slides #18, 19,24 and 28
Dr. Dale R.K. Fluke and Mrs. Stacey King: Slides #20 and 22
Dr. R.B. Davis: Slides #8
The Upjohn Company: Slides #21,25, 26 and 29
Dr. Libero Ajello: Slides #23 and 27